Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NATURAL HAZARD SCIENCE (naturalhazardscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited. Please see applicable Privacy Policy and Legal Notice (for details see Privacy Policy).

date: 21 September 2017

Impact of Climate Change on Flood Factors and Extent of Damages in the Hindu Kush Region

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article.

Hindu Kush is a high mountain system located in the immediate west of Karakorum and Himalayas. It is the greatest watershed of River Kabul, River Chitral, River Swat, and River Panjkora in Pakistan and the Amu River in Central Asia. The Hindu Kush system hosts numerous glaciers, snow-clad mountains, and fertile river valleys; it also supports a large population and provides year-round water to replenish streams and rivers. The study region is vulnerable to a wide range of hazards including floods, earthquakes, landslides, drought, and desertification. However, in the Hindu Kush region, riverine and flash floods frequently occur as well as extreme hydro-meteorological events. The upper reaches experience characteristics of flash floods, whereas the lower reaches experience river floods. In the upstream areas, flash floods are sudden and more destructive in nature. Every year in summer, monsoonal rainfall, together with the heavy melting of snow, ice, and glaciers accelerates discharge in rivers. Climate change has a strong relationship with trends in temperature and resultant changes in rainfall pattern and river discharge. In the wake of observed climate change, there is a rising trend in temperature, which indicates the early and rapid melting of snow and glaciers in the catchment areas. The analysis reveals that in the late 20th and early 21st centuries a radical change in behavior of numerous valley glaciers has been noted. Similarly, a fluctuation in the amount of snowfall occurrences together with its timing and seasonality has been recorded. In addition, the spatial and temporal scales of violent weather events have grown during the past thirty years. Such changes in water regimes including the frequent but substantial increase in heavy precipitation events and rapid melting of snow in the headwater region, siltation in active channels, excessive deforestation in the past three decades, human encroachments onto the active flood channel and the bursting of temporary dams have further escalated the flooding events. Analysis reveals that the Hindu Kush region is beyond the reach of existing weather RADAR network and hence flood forecasting and early warning is ineffective. In the study region, almost every year, the floodwater overflows the levees and causes damages to standing crops, infrastructure, sources of livelihood. And worst of all, there are human casualties.